Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 818
Filtrar
1.
Mucosal Immunol ; 15(5): 990-999, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35810259

RESUMO

Type 2 immunity mediates the immune responses against parasites and allergic stimuli. Evidence from studies of cell lines and animals implies that neuromedin U (NmU) acts as a pro-inflammatory mediator of type 2 inflammation. However, the role of NmU in human type 2 immunity remains unclear. Here we investigated the expression of NmU in human blood and airways, and the expression of NmU receptors by human immune cells in blood and lung tissue. We detected human NmU (hNmU-25) in blood and airways with higher concentrations in the latter. NmU receptor 1 (NmUR1) was expressed by most human immune cells with higher levels in type 2 cells including type 2 T helpers, type 2 cytotoxic T cells, group-2 innate lymphoid cells and eosinophils, and was upregulated in lung-resident and activated type 2 cells. We also assessed the effects of NmU in these cells. hNmU-25 elicited type 2 cytokine production by type 2 lymphocytes and induced cell migration, including eosinophils. hNmU-25 also enhanced the type 2 immune response to other stimuli, particularly prostaglandin D2. These results indicate that NmU could contribute to the pathogenic processes of type 2 immunity-mediated diseases in humans via its pro-inflammatory effects on type 2 lymphocytes and eosinophils.


Assuntos
Imunidade Inata , Neuropeptídeos , Hormônios Peptídicos , Eosinófilos/imunologia , Humanos , Neuropeptídeos/imunologia , Linfócitos T/imunologia
2.
Bioengineered ; 13(5): 13986-13999, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35758021

RESUMO

Recent studies have shown that NXPH family member 4 (NXPH4) plays an important role in the progression of cancer. However, the potential role of NXPH4 in bladder cancer (BCa) remains to be explored. The purpose of the present study was to identify whether NXPH4 could be used as a biomarker to predict the prognosis of BCa. We first examined the expression of NXPH4 in pan-cancer, and then focused on BCa. Univariate and multivariate Cox regression analysis were used to investigate whether NXPH4 could be used as an independent prognostic indicator. Gene set enrichment analysis (GSEA) was used for functional analysis of NXPH4-related genes. CIBERSORT algorithm was used to calculate immune cell infiltration levels with different NXPH4 expression. Finally, the expression of NXPH4 was validated in clinical tissue specimens and bladder cancer cell lines by immunohistochemistry and qRT-PCR. The tumor-promoting effects of NXPH4 were further investigated using counting kit-8 (CCK-8), colony formation, EdU assays, and tumor xenograft model. Our results showed that NXPH4 was highly expressed in BCa tissues. Patients in the high NXPH4 expression group had shorter overall survival (OS) and progression-free survival (PFS). We found that immune-related pathways were enriched in NXPH4-related genes. Immune cell infiltrations in BCa were also associated with different NXPH4 expression. NXPH4 was further found to be highly expressed in our validation specimens. The proliferative effect of NXPH4 was confirmed in BCa in vivo and in vitro. Overall, NXPH4 is a biomarker for predicting BCa prognosis and associated with immune infiltration.Abbreviations: NXPH4: Neurexophilin 4; BCa: Bladder cancer; TCGA-BLCA: The Cancer Genome Atlas Urothelial Bladder Carcinoma; shRNA: short hairpin RNA; NC: Negative control; OS: Overall survival; PFS: Progression-free survival; TME: Tumor microenvironment; IPS: immunophenoscore; ICIs: Immune checkpoint inhibitors; DEGs: Differential expression genes.


Assuntos
Glicoproteínas , Neuropeptídeos , Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Neuropeptídeos/genética , Neuropeptídeos/imunologia , Prognóstico , Microambiente Tumoral , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
3.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200674

RESUMO

Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Peixes/metabolismo , Neuropeptídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Aquicultura , Proteínas de Peixes/imunologia , Peixes , Brânquias/metabolismo , Humanos , Imunidade Inata/imunologia , Neuropeptídeos/imunologia , Pele/metabolismo
4.
Fish Shellfish Immunol ; 121: 142-151, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34998986

RESUMO

Crustacean cardioactive peptide (CCAP) is a pleiotropic neuropeptide, but its immunomodulatory role is not clear. Herein, the mud crab Scylla paramamosain provides a primitive model to study crosstalk between the neuroendocrine and immune systems. In this study, in situ hybridization showed that Sp-CCAP positive signal localized in multiple cells in the nervous tissue, while its conjugate receptor (Sp-CCAPR) positive signal mainly localized in the semigranular cells of hemocytes. The Sp-CCAP mRNA expression level in the thoracic ganglion was significantly up-regulated after lipopolysaccharide (LPS) stimulation, but the Sp-CCAP mRNA expression level was up-regulated firstly and then down-regulated after the stimulation of polyriboinosinic polyribocytidylic acid [Poly (I:C)]. After the injection of Sp-CCAP synthesis peptide, the phagocytosis ability of hemocytes was significantly higher than that of synchronous control group. Simultaneously, the mRNA expression of phagocytosis related gene (Sp-Rab5), nuclear transcription factor NF-κB homologues (Sp-Relish), C-type lectin (Sp-CTL-B), prophenoloxidase (Sp-proPO), pro-inflammatory cytokines factor (Sp-TNFSF, Sp-IL16) and antimicrobial peptides (Sp-ALF1 and Sp-ALF5) in the hemocytes were also significantly up-regulated at different time points after the injection of Sp-CCAP synthetic peptide, but Sp-TNFSF, Sp-ALF1 and Sp-ALF5 were down-regulated significantly at 24h. In addition, RNA interference of Sp-CCAP suppressed the phagocytic activity of hemocytes and inhibited the mRNA expression of Sp-Rab5, Sp-Relish, Sp-CTL-B, Sp-TNFSF, Sp-IL16 and Sp-ALF5 in the hemocytes, and ultimately weakened the ability of hemolymph bacteria clearance of mud crab. Taken together, these results revealed that CCAP induced innate immune and increased the anti-infection ability in the mud crab.


Assuntos
Proteínas de Artrópodes/imunologia , Braquiúros , Imunidade Inata , Neuropeptídeos , Animais , Braquiúros/genética , Braquiúros/imunologia , Interleucina-16 , Neuropeptídeos/imunologia , Filogenia , Poli I-C/farmacologia , RNA Mensageiro/genética
5.
J Leukoc Biol ; 111(1): 209-221, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857344

RESUMO

Communication between the nervous and immune systems serves a key role in host-protective immunity at mucosal barrier sites including the respiratory tract. In these tissues, neuroimmune interactions operate in bidirectional circuits that can sense and respond to mechanical, chemical, and biologic stimuli. Allergen- or helminth-induced products can produce airway inflammation by direct action on nociceptive afferents and adjacent tissues. The activity of nociceptive afferents can regulate innate and adaptive immune responses via neuropeptides and neurotransmitter signaling. This review will summarize recent work investigating the role of neuropeptides CGRP, VIP, neuromedins, substance P, and neurotransmitters dopamine and the B2-adrenoceptor agonists epinepherine/norepinepherine, each of which influence type 2 immunity by instructing mast cell, innate lymphoid cell type 2, dendritic cell, and T cell responses, both in the airway and the draining lymph node. Afferents in the airway also contain receptors for alarmins and cytokines, allowing their activity to be modulated by immune cell secreted products, particularly those secreted by mast cells. Taken together, we propose that further investigation of how immunoregulatory neuropeptides shape respiratory inflammation in experimental systems may reveal novel therapeutic targets for addressing the increasing prevalence of chronic airway disease in humans.


Assuntos
Hipersensibilidade/imunologia , Inflamação/imunologia , Neuroimunomodulação , Neuropeptídeos/imunologia , Animais , Humanos , Imunidade Inata , Mucosa/imunologia , Sistema Respiratório/imunologia
6.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830245

RESUMO

Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.


Assuntos
Anti-Inflamatórios/uso terapêutico , Histamina/imunologia , Fatores Imunológicos/uso terapêutico , Prurido/imunologia , Receptores Histamínicos H1/imunologia , Células Receptoras Sensoriais/imunologia , Anticorpos Monoclonais/uso terapêutico , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Citocinas/metabolismo , Expressão Gênica , Histamina/metabolismo , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/patologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/patologia , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/imunologia , Neuropeptídeos/metabolismo , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/uso terapêutico , Prurido/tratamento farmacológico , Prurido/genética , Prurido/patologia , Receptores Histamínicos H1/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/inervação , Pele/patologia
7.
Front Immunol ; 12: 617658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868232

RESUMO

T cells are essential for eradicating microorganisms and cancer and for tissue repair, have a pro-cognitive role in the brain, and limit Central Nervous System (CNS) inflammation and damage upon injury and infection. However, in aging, chronic infections, acute SARS-CoV-2 infection, cancer, chronic stress, depression and major injury/trauma, T cells are often scarce, exhausted, senescent, impaired/biased and dysfunctional. People with impaired/dysfunctional T cells are at high risk of infections, cancer, other diseases, and eventually mortality, and become multi-level burden on other people, organizations and societies. It is suggested that "Nerve-Driven Immunity" and "Personalized Adoptive Neuro-Immunotherapy" may overcome this problem. Natural Neurotransmitters and Neuropeptides: Glutamate, Dopamine, GnRH-II, CGRP, Neuropeptide Y, Somatostatin and others, bind their well-characterized receptors expressed on the cell surface of naïve/resting T cells and induce multiple direct, beneficial, and therapeutically relevant effects. These Neurotransmitters and Neuropeptides can induce/increase: gene expression, cytokine secretion, integrin-mediated adhesion, chemotactic migration, extravasation, proliferation, and killing of cancer. Moreover, we recently found that some of these Neurotransmitters and Neuropeptides also induce rapid and profound decrease of PD-1 in human T cells. By inducing these beneficial effects in naïve/resting T cells at different times after binding their receptors (i.e. NOT by single effect/mechanism/pathway), these Neurotransmitters and Neuropeptides by themselves can activate, rejuvenate, and improve T cells. "Personalized Adaptive Neuro-Immunotherapy" is a novel method for rejuvenating and improving T cells safely and potently by Neurotransmitters and Neuropeptides, consisting of personalized diagnostic and therapeutic protocols. The patient's scarce and/or dysfunctional T cells are activated ex vivo once by pre-selected Neurotransmitters and/or Neuropeptides, tested, and re-inoculated to the patient's body. Neuro-Immunotherapy can be actionable and repeated whenever needed, and allows other treatments. This adoptive Neuro-Immunotherapy calls for testing its safety and efficacy in clinical trials.


Assuntos
Encéfalo/imunologia , COVID-19/imunologia , Neuropeptídeos/imunologia , Neurotransmissores/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Encéfalo/patologia , Encéfalo/virologia , COVID-19/patologia , Humanos , Rejuvenescimento , Linfócitos T/patologia
8.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915818

RESUMO

The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host's innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.


Assuntos
Infecções/imunologia , Neuropeptídeos/imunologia , Animais , Humanos , Infecções/microbiologia , Infecções/terapia , Terapia de Alvo Molecular , Virulência
9.
Rev Neurol ; 71(12): 460-466, 2020 Dec 16.
Artigo em Espanhol | MEDLINE | ID: mdl-33319349

RESUMO

INTRODUCTION: The orexinergic system is one of the chemical mediators that modulate the gut-brain axis, given the involvement of hypothalamic orexin A (OXA) in gastrointestinal motility and secretion, and the presence of OXA in enteroendocrine cells of the intestinal mucosa and in primary afferent neurons of the mesenteric plexus, permitting its participation in gut-brain signaling. AIM: The source of OXA and the signal(s) triggering its peripheral release are not fully understood, and it is not known whether it acts on orexigenic receptors in peripheral tissues to meet physiological or pathological demands. The aim of this review is to address these questions in the light of new data indicating that OXA may have functions in the gut-brain axis that go beyond its participation in energy homeostasis. DEVELOPMENT: OXA in the enteric system protects against systemic and central inflammation, and hypothalamic OXA orchestrates numerous peripheral effects to suppress the systemic inflammatory response. For this reason, OXA may act as an immunomodulator in chronic inflammations or autoimmune diseases. OXA is also involved in the stress response, regulating physiological responses to emotional or stressful stimuli. CONCLUSIONS: OXA exerts anti-inflammatory and gastroprotective effects on the intestinal mucosa; however, it may increase the response to external and/or internal stress in individuals with chronic inflammation, exacerbating the gastrointestinal inflammation. Hence, pharmacologic interventions in the orexinergic system have been proposed to treat diseases in which intestinal hypersensitivity is combined with appetite loss, sleep disturbance, stress, and anxiety.


TITLE: Orexina A como mediadora en el diálogo intestino-cerebro.Introducción. Entre los mediadores químicos que modulan el eje intestino-cerebro debe incluirse el sistema orexinérgico, ya que la orexina A (OXA) hipotalámica interviene en la motilidad y en la secreción gastrointestinal. También está presente en las células enteroendocrinas de la mucosa intestinal y en las neuronas aferentes primarias del plexo mientérico, y puede intervenir en la señalización intestino-cerebro. Objetivo. No se conoce con exactitud la fuente ni la señal que originan la liberación de OXA periférica, ni tampoco si actúa en los receptores orexinérgicos de los tejidos periféricos ante demandas fisiológicas o patológicas. Esta revisión intenta analizar estas cuestiones a la luz de nuevos datos que indican que la OXA en el eje intestino-cerebro puede tener funciones más allá de su participación en la homeostasis energética. Desarrollo. La OXA en el sistema entérico protege de la inflamación sistémica y central, y en el hipotálamo orquesta numerosos efectos periféricos para suprimir la respuesta inflamatoria sistémica. Por ello, podría actuar como sustancia inmunomoduladora en inflamaciones crónicas o en enfermedades autoinmunitarias. La OXA también se relaciona con la respuesta de estrés, regulando las respuestas fisiológicas a estímulos emocionales o estresantes. Conclusiones. Aunque la OXA tiene efectos antiinflamatorios y gastroprotectores de la mucosa intestinal, en procesos de inflamación crónica podría incrementar la respuesta a estímulos estresantes, tanto externos como internos, y exacerbar la inflamación gastrointestinal. Por ello, se han propuesto intervenciones farmacológicas sobre el sistema orexinérgico como tratamiento para enfermedades en las que la hipersensibilidad intestinal coexiste con pérdida de apetito, alteraciones del sueño, estrés y ansiedad.


Assuntos
Trato Gastrointestinal/imunologia , Trato Gastrointestinal/fisiologia , Orexinas/imunologia , Orexinas/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Camundongos , Neuroimunomodulação/fisiologia , Neurônios/fisiologia , Neuropeptídeos/imunologia , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Neurotransmissores/imunologia , Neurotransmissores/metabolismo , Neurotransmissores/fisiologia , Receptores de Orexina/fisiologia , Orexinas/metabolismo , Angústia Psicológica
10.
J Neuroinflammation ; 17(1): 356, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239034

RESUMO

The existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell-related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell-related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell-related pathogenesis.


Assuntos
Mastócitos/imunologia , Neurônios/imunologia , Neuropeptídeos/imunologia , Neurotransmissores/imunologia , Receptores de Neurotransmissores/imunologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Humanos , Mastócitos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Receptores de Neurotransmissores/metabolismo
11.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105700

RESUMO

Members of neuropeptide B/W signaling system have been predominantly detected and mapped within the CNS. In the rat, this system includes neuropeptide B (NPB), neuropeptide W (NPW) and their specific receptor NPBWR1. This signaling system has a wide spectrum of functions including a role in modulation of inflammatory pain and neuroendocrine functions. Expression of NPB, NPW and NPBWR1 in separate heart compartments, dorsal root ganglia (DRG) and stellate ganglia was proven by RT-qPCR, Western blot (WB) and immunofluorescence. Presence of mRNA for all tested genes was detected within all heart compartments and ganglia. The presence of proteins preproNPB, preproNPW and NPBWR1 was confirmed in all the chambers of heart by WB. Expression of preproNPW and preproNPB was proven in cardiac ganglionic cells obtained by laser capture microdissection. In immunofluorescence analysis, NPB immunoreactivity was detected in nerve fibers, some nerve cell bodies and smooth muscle within heart and both ganglia. NPW immunoreactivity was present in the nerve cell bodies and nerve fibers of heart ganglia. Weak nonhomogenous staining of cardiomyocytes was present within heart ventricles. NPBWR1 immunoreactivity was detected on cardiomyocytes and some nerve fibers. We confirmed the presence of NPB/W signaling system in heart, DRG and stellate ganglia by proteomic and genomic analyses.


Assuntos
Miocárdio/metabolismo , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Imunofluorescência , Gânglios Espinais/metabolismo , Expressão Gênica , Masculino , Neuropeptídeos/imunologia , Neuropeptídeos/metabolismo , Ratos Zucker , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/imunologia , Reprodutibilidade dos Testes , Transdução de Sinais , Gânglio Estrelado/metabolismo
12.
Recurso na Internet em Português | LIS - Localizador de Informação em Saúde | ID: lis-47843

RESUMO

Muitos pacientes infectados pelo novo coronavírus (Sars-CoV-2) apresentam uma resposta inflamatória exacerbada, provocada pela atividade exagerada do sistema imunológico na tentativa de proteger o organismo do patógeno


Assuntos
Betacoronavirus , Infecções por Coronavirus , Neuropeptídeos/imunologia
13.
Curr Protein Pept Sci ; 21(11): 1097-1102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951575

RESUMO

Immunotherapy emerges as a treatment strategy for breast cancer marker, diagnosis and treatment. In this review, monoclonal antibodies (mAbs)-based passive and peptide vaccines as active immunotherapy approaches like activation of B-cells and T-cells are studied. Passive immunotherapy is mAbs-based therapy effective against tumor cells, which acts by targeting HER2, IGF 1R, VEGF, BCSC and immune checkpoints. Neuropeptide Y (NPY) and GPCR are the areas of interest to target BC metastases for on-targeting therapeutic action. Neuropeptide S (NPS) or NPS receptor 1, acts as a biomarker for Neuroendocrine tumors (NET), mostly characterized by synaptophysin and chromogranin-A expression or Ki-67 proliferation index. The protein fusion technologies arise as a promising avenue in plant expression systems for increased recombinant Ab accumulation and cost-efficient purification. Recently, mAbs-based immunotherapy effectiveness is appreciated as a novel therapeutic combination of chemotherapy and immunotherapy to reduce the side effects and improve therapeutic responsiveness. Synthetic drug resistance will be overcome by mAbs-based therapy through several clinical trials and detection methods need to be optimized for accuracy and precision. Pharmacokinetic attributes need to be accessed for preferred receptor-agonist activity without ligand accumulation.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/terapia , Regulação Neoplásica da Expressão Gênica/imunologia , Imunoterapia/métodos , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeo Y/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Metástase Linfática , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neuropeptídeo Y/imunologia , Neuropeptídeo Y/metabolismo , Neuropeptídeos/imunologia , Neuropeptídeos/metabolismo , Ligação Proteica , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/imunologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/imunologia , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
14.
J Clin Invest ; 130(11): 5989-6004, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32750040

RESUMO

How T cells integrate environmental cues into signals that limit the magnitude and length of immune responses is poorly understood. Here, we provide data that demonstrate that B55ß, a regulatory subunit of protein phosphatase 2A, represents a molecular link between cytokine concentration and apoptosis in activated CD8+ T cells. Through the modulation of AKT, B55ß induced the expression of the proapoptotic molecule Hrk in response to cytokine withdrawal. Accordingly, B55ß and Hrk were both required for in vivo and in vitro contraction of activated CD8+ lymphocytes. We show that this process plays a role during clonal contraction, establishment of immune memory, and preservation of peripheral tolerance. This regulatory pathway may represent an unexplored opportunity to end unwanted immune responses or to promote immune memory.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Proteína Fosfatase 2/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Camundongos , Camundongos Transgênicos , Neuropeptídeos/genética , Neuropeptídeos/imunologia , Proteína Fosfatase 2/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia
15.
Exp Dermatol ; 29(8): 703-725, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32682334

RESUMO

Anagen stage hair follicles (HFs) exhibit "immune privilege (IP)" from the level of the bulge downwards to the bulb. Both passive and active IP mechanisms protect HFs from physiologically undesired immune responses and limit immune surveillance. IP is relative, not absolute, and is primarily based on absent, or greatly reduced, intra-follicular antigen presentation via MHC class I and II molecules, along with prominent expression of "no danger" signals like CD200 and the creation of an immunoinhibitory signalling milieu generated by the secretory activities of HFs. Perifollicular mast cells, Tregs and other immunocytes may also contribute to HF IP maintenance in healthy human skin. Collapse of anagen hair bulb IP is an essential prerequisite for the development of alopecia areata (AA). In AA, lesional HFs are rapidly infiltrated by NKG2D + T cells and natural killer (NK) cells, while perifollicular mast cells acquire a profoundly pro-inflammatory phenotype and interact with autoreactive CD8+ T cells. Using animal models, significant functional evidence has accumulated that demonstrates the dominance of the immune system in AA pathogenesis. Purified CD8+T-cell and NK cell populations alone, which secrete fγ, suffice to induce the AA phenotype, while CD4+T-cells aggravate it, and Tregs and iNKT cells may provide relative protection against AA development. While IP collapse may be induced by exogenous agents, inherent IP deficiencies might confer increased susceptibility to AA for some individuals. Thus, a key goal for effective AA management is the re-establishment of a functional HF IP, which will also provide superior protection from disease relapse.


Assuntos
Alopecia em Áreas/imunologia , Alopecia em Áreas/terapia , Citocinas/imunologia , Folículo Piloso/imunologia , Privilégio Imunológico , Alopecia em Áreas/metabolismo , Animais , Antígeno B7-H1/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Mastócitos/imunologia , Neuropeptídeos/imunologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia
16.
Dev Comp Immunol ; 110: 103725, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32376281

RESUMO

B-type allatostatin (AST-B) is a pleiotropic neuropeptide, widely found in arthropods. However, the information about its immune effect in crustaceans is unknown. In this study, we identified the nervous tissue as the main site for Sp-AST-B expression, while its receptor gene (Sp-AST-BR) is widely expressed in various tissues, including the hepatopancreas. This suggests the peptide's potential role in diverse physiological processes in the mud crab Scylla paramamosain. In situ hybridization revealed that Sp-AST-BR is mainly localized in the F-cell of hepatopancreas. Furthermore, we found a significant up-regulation of Sp-AST-BR transcripts in the hepatopancreas following exposure to lipopolysaccharide (LPS) or polyriboinosinic polyribocytidylic acid (Poly (I:C)). Results from in vitro and in vivo experiments revealed that treatment with a synthetic AST-B peptide mediated significant upregulation in expression of AST-BR, nuclear factor-κB (NF-κB) pathway components (Dorsal and Relish), pro-inflammatory cytokine (IL-16) and antimicrobial peptides (AMPs) in the hepatopancreas. In addition, AST-B treatment mediated significant elevation of nitric oxide (NO) production and enhanced the bacteriostasis capacity of the hepatopancreas tissue in vitro. Taken together, these findings reveal the existence of a basic neuroendocrine-immune (NEI) network in crabs, and indicate that AST-B could couple with its receptor to trigger downstream signaling pathways and induce immune responses in the hepatopancreas.


Assuntos
Proteínas de Artrópodes/metabolismo , Braquiúros/imunologia , Hepatopâncreas/imunologia , Neuropeptídeos/metabolismo , Animais , Proteínas de Artrópodes/genética , Imunidade Inata , Interleucina-16/metabolismo , Lipopolissacarídeos/imunologia , NF-kappa B/metabolismo , Neuroimunomodulação , Neuropeptídeos/genética , Neuropeptídeos/imunologia , Óxido Nítrico/metabolismo , Filogenia , Poli I-C/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores de Neuropeptídeos/metabolismo , Transdução de Sinais
17.
Fish Shellfish Immunol ; 101: 244-251, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32272259

RESUMO

Short neuropeptide F (sNPF), a highly conserved neuropeptide, displays pleiotropic functions on multiple aspects of physiological processes, such as feeding, metabolic stress, locomotion, circadian clock and reproduction. However, to date there has no any report on the possible immunoregulation of sNPF in crustaceans. In the present study, we found that the Sp-sNPF was mainly expressed in the nervous tissue in the mud crab Scylla paramamosain, while the sNPF receptor gene (Sp-sNPF-R) was expressed in a wide variety of tissues, including the hepatopancreas. In situ hybridization further showed that the Sp-sNPF-R positive signal mainly localized in the F-cells of the hepatopancreas. Moreover, the Sp-sNPF-R transcription could be significantly up-regulated after the challenge of bacteria-analog LPS or virus-analog Poly (I:C). Both in vitro and in vivo experiments showed that the synthetic sNPF peptide significantly increased the gene expressions of sNPF-R, nuclear factor-κB (NF-κB) signaling genes and antimicrobial peptides (AMPs) in the hepatopancreas. Simultaneously, the administration of sNPF peptide in vitro also increased the concentration of nitric oxide (NO) and the bacteriostasis of the culture medium of hepatopancreas. These results indicated that sNPF up-regulated hepatopancreas immune responses, which may bring new insight into the neuroendocrine-immune regulatory system in crustacean species, and could potentially provide a new strategy for disease prevention and control for mud crab aquaculture.


Assuntos
Proteínas de Artrópodes/imunologia , Braquiúros/imunologia , Hepatopâncreas/imunologia , Imunidade Inata/genética , Neuropeptídeos/imunologia , Animais , Braquiúros/genética , Feminino
18.
Front Immunol ; 11: 308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265899

RESUMO

The dense innervation of the gastro-intestinal tract with neuronal networks, which are in close proximity to immune cells, implies a pivotal role of neurons in modulating immune functions. Neurons have the ability to directly sense danger signals, adapt immune effector functions and integrate these signals to maintain tissue integrity and host defense strategies. The expression pattern of a large set of immune cells in the intestine characterized by receptors for neurotransmitters and neuropeptides suggest a tight neuronal hierarchical control of immune functions in order to systemically control immune reactions. Compelling evidence implies that targeting neuro-immune interactions is a promising strategy to dampen immune responses in autoimmune diseases such as inflammatory bowel diseases or rheumatoid arthritis. In fact, electric stimulation of vagal fibers has been shown to be an extremely effective treatment strategy against overwhelming immune reactions, even after exhausted conventional treatment strategies. Such findings argue that the nervous system is underestimated coordinator of immune reactions and underline the importance of neuro-immune crosstalk for body homeostasis. Herein, we review neuro-immune interactions with a special focus on disease pathogenesis throughout the gastro-intestinal tract.


Assuntos
Homeostase/imunologia , Imunidade/imunologia , Neuroimunomodulação/imunologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/terapia , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Sistema Nervoso Autônomo/fisiologia , Sistema Nervoso Entérico/fisiologia , Microbioma Gastrointestinal , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Íleus/imunologia , Íleus/terapia , Imunidade Inata , Doenças Inflamatórias Intestinais/imunologia , Linfócitos/imunologia , Neuroimunomodulação/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeos/imunologia , Sistemas Neurossecretores/fisiologia , Neurotransmissores/agonistas , Neurotransmissores/fisiologia , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/terapia , Receptores de Neurotransmissores/imunologia , Sepse/imunologia , Sepse/terapia , Simbiose , Estimulação do Nervo Vago
19.
Immunity ; 52(3): 464-474, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187517

RESUMO

The ability of the nervous system to sense environmental stimuli and to relay these signals to immune cells via neurotransmitters and neuropeptides is indispensable for effective immunity and tissue homeostasis. Depending on the tissue microenvironment and distinct drivers of a certain immune response, the same neuronal populations and neuro-mediators can exert opposing effects, promoting or inhibiting tissue immunity. Here, we review the current understanding of the mechanisms that underlie the complex interactions between the immune and the nervous systems in different tissues and contexts. We outline current gaps in knowledge and argue for the importance of considering infectious and inflammatory disease within a conceptual framework that integrates neuro-immune circuits both local and systemic, so as to better understand effective immunity to develop improved approaches to treat inflammation and disease.


Assuntos
Sistema Imunitário/imunologia , Sistema Nervoso/imunologia , Neuroimunomodulação/imunologia , Neurônios/imunologia , Animais , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Imunidade Inata/imunologia , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Inflamação Neurogênica/imunologia , Inflamação Neurogênica/metabolismo , Neurônios/metabolismo , Neuropeptídeos/imunologia , Neuropeptídeos/metabolismo , Transdução de Sinais/imunologia
20.
Ann Neurol ; 87(6): 869-884, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196746

RESUMO

OBJECTIVE: Assess occurrence of the dendritic spine scaffolding protein Drebrin as a pathophysiologically relevant autoantibody target in patients with recurrent seizures and suspected encephalitis as leading symptoms. METHODS: Sera of 4 patients with adult onset epilepsy and suspected encephalitis of unresolved etiology and equivalent results in autoantibody screening were subjected to epitope identification. We combined a wide array of approaches, ranging from immunoblotting, immunoprecipitation, mass spectrometry, subcellular binding pattern analyses in primary neuronal cultures, and immunohistochemistry in brains of wild-type and Drebrin knockout mice to in vitro analyses of impaired synapse formation, morphology, and aberrant neuronal excitability by antibody exposure. RESULTS: In the serum of a patient with adult onset epilepsy and suspected encephalitis, a strong signal at ∼70kDa was detected by immunoblotting, for which mass spectrometry revealed Drebrin as the putative antigen. Three other patients whose sera also showed strong immunoreactivity around 70kDa on Western blotting were also anti-Drebrin-positive. Seizures, memory impairment, and increased protein content in cerebrospinal fluid occurred in anti-Drebrin-seropositive patients. Alterations in cerebral magnetic resonance imaging comprised amygdalohippocampal T2-signal increase and hippocampal sclerosis. Diagnostic biopsy revealed T-lymphocytic encephalitis in an anti-Drebrin-seropositive patient. Exposure of primary hippocampal neurons to anti-Drebrin autoantibodies resulted in aberrant synapse composition and Drebrin distribution as well as increased spike rates and the emergence of burst discharges reflecting network hyperexcitability. INTERPRETATION: Anti-Drebrin autoantibodies define a chronic syndrome of recurrent seizures and neuropsychiatric impairment as well as inflammation of limbic and occasionally cortical structures. Immunosuppressant therapies should be considered in this disorder. ANN NEUROL 2020;87:869-884.


Assuntos
Autoanticorpos/imunologia , Encefalite/imunologia , Neuropeptídeos/imunologia , Convulsões/imunologia , Adulto , Idoso , Animais , Encefalite/diagnóstico por imagem , Epitopos/imunologia , Feminino , Hipocampo/imunologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/imunologia , Transtornos Mentais/psicologia , Camundongos Knockout , Pessoa de Meia-Idade , Neuroimagem , Convulsões/diagnóstico por imagem , Sinapses/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...